A posteriori error estimators for nonconforming finite element methods of the linear elasticity problem

نویسندگان

  • Kwang-Yeon Kim
  • Hyung-Chun Lee
چکیده

— We introducé two a posteriori error estimators for piecewise îinear nonconforming finit e element approximation of second order e Hipt ie problems. We prove that these estimators are equivalent to the energy norm of the error, Finally, we present several numerical experiments showing the good behavior of the estimators when they are used as local error indicators for adaptive refinement. Résumé. -— On introduit deux « estimateurs » d'erreur a posteriori pour une approximation par une méthode d'éléments finis non conforme d'un problème elliptique du second ordre. On montre que ces « estimateurs » sont équivalents à la norme d'énergie de V erreur. Finalement, on présente diverses expériences numériques montrant le bon comportement de ces estimateurs, lorsqu'on les utilise comme indicateurs locaux d'erreurs pour un raffinement adaptatif.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem

This paper compares different a posteriori error estimators for nonconforming first-order Crouzeix-Raviart finite element methods for simple second-order partial differential equations. All suggested error estimators yield a guaranteed upper bound of the discrete energy error up to oscillation terms with explicit constants. Novel equilibration techniques and an improved interpolation operator f...

متن کامل

Residual a Posteriori Error Estimators for Contact Problems in Elasticity

This paper is concerned with the unilateral contact problem in linear elasticity. We define two a posteriori error estimators of residual type to evaluate the accuracy of the mixed finite element approximation of the contact problem. Upper and lower bounds of the discretization error are proved for both estimators and several computations are performed to illustrate the theoretical results. Mat...

متن کامل

A posteriori error estimators for mixed finite element methods in linear elasticity

Three a posteriori error estimators for PEERS and BDMS elements in linear elasticity are presented: one residual error estimator and two estimators based on the solution of auxiliary local problems with different boundary conditions. All of them are reliable and efficient with respect to the standard norm and furthermore robust for nearly incompressible materials.

متن کامل

Residual and Hierarchical a Posteriori Error Estimates for Nonconforming Mixed Finite Element Methods

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2002